On the Preconditioning of the Block Tridiagonal Linear System of Equations
نویسنده
چکیده
Two algorithms for computing the inverse factors of general tridiagonal and pentadiagonal matrices are obtained. Then, these algorithms are used for computing a block ILU preconditioner for the block tridiagonal linear system of equations. Some numerical results are given to show the robustness and efficiency of the preconditioner. The performance of the proposed preconditioner is compared with a recently proposed method. AMS Subject Classification : 65F10, 65F50.
منابع مشابه
A convergence analysis for a sweeping preconditioner for block tridiagonal systems of linear equations
We study sweeping preconditioners for symmetric and positive definite block tridiagonal systems of linear equations. The algorithm provides an approximate inverse that can be used directly or in a preconditioned iterative scheme. These algorithms are based on replacing the Schur complements appearing in a block Gaussian elimination direct solve by hierarchical matrix approximations with reduced...
متن کاملNumerical solution of system of linear integral equations via improvement of block-pulse functions
In this article, a numerical method based on improvement of block-pulse functions (IBPFs) is discussed for solving the system of linear Volterra and Fredholm integral equations. By using IBPFs and their operational matrix of integration, such systems can be reduced to a linear system of algebraic equations. An efficient error estimation and associated theorems for the proposed method are also ...
متن کاملSolving a system of 2D Burgers' equations using Semi-Lagrangian finite difference schemes
In this paper, we aim to generalize semi-Lagrangian finite difference schemes for a system of two-dimensional (2D) Burgers' equations. Our scheme is not limited by the Courant-Friedrichs-Lewy (CFL) condition and therefore we can apply larger step size for the time variable. Proposed schemes can be implemented in parallel very well and in fact, it is a local one-dimensional (LOD) scheme which o...
متن کاملBernoulli operational matrix method for system of linear Volterra integral equations
In this paper, the numerical technique based on hybrid Bernoulli and Block-Pulse functions has been developed to approximate the solution of system of linear Volterra integral equations. System of Volterra integral equations arose in many physical problems such as elastodynamic, quasi-static visco-elasticity and magneto-electro-elastic dynamic problems. These functions are formed by the hybridi...
متن کاملThe eect of indicial equations in solving inconsistent singular linear system of equations
The index of matrix A in Cn.n is equivalent to the dimension of largest Jor-dan block corresponding to the zero eigenvalue of A. In this paper, indicialequations and normal equations for solving inconsistent singular linear systemof equations are investigated.
متن کامل